Learning Causal Direction from Transitions with Continuous and Noisy Variables
نویسندگان
چکیده
Previous work has found that one way people infer the direction of causal relationships involves identifying an asymmetry in how causes and effects change over time. In the current research we test the generalizability of this reasoning strategy in more complex environments involving ordinal and continuous variables and with noise. Participants were still able to use the strategy with ordinal and continuous variables. However, when noise made it difficult to identify the asymmetry participants were no longer able to infer the causal direction.
منابع مشابه
Elemental Causal Learning from Transitions
Much research on elemental causal learning has focused on how causal strength is learned from the states of variables. In longitudinal contexts, the way a cause and effect change over time can be informative of the underlying causal relationship. We propose a framework for inferring the causal strength from different observed transitions, and compare the predictions to existing models of causal...
متن کاملRunning head: INFERRING CAUSAL VARIABLES FROM CONTINUOUS ACTION SEQUENCES 1 Inferring action structure and causal relationships in continuous sequences of human action
In the real world, causal variables do not come pre-identified or occur in isolation, but instead are embedded within a continuous temporal stream of events. A challenge faced by both human learners and machine learning algorithms is identifying subsequences that correspond to the appropriate variables for causal inference. A specific instance of this problem is action segmentation: dividing a ...
متن کاملPairwise likelihood ratios for estimation of non-Gaussian structural equation models
We present new measures of the causal direction, or direction of effect, between two non-Gaussian random variables. They are based on the likelihood ratio under the linear non-Gaussian acyclic model (LiNGAM). We also develop simple first-order approximations of the likelihood ratio and analyze them based on related cumulant-based measures, which can be shown to find the correct causal direction...
متن کاملPairwise Measures of Causal Direction in Linear Non-Gaussian Acyclic Models
We present new measures of the causal direction between two non-gaussian random variables. They are based on the likelihood ratio under the linear non-gaussian acyclic model (LiNGAM). We also develop simple first-order approximations and analyze them based on related cumulant-based measures. The cumulant-based measures can be shown to give the right causal directions, and they are statistically...
متن کاملAutomatic Discovery of Latent Variable Models
Much of our understanding of Nature comes from theories about unobservable entities. Identifying which hidden variables exist given measurements in the observable world is therefore an important step in the process of discovery. Such an enterprise is only possible if the existence of latent factors constrains how the observable world can behave. We do not speak of atoms, genes and antibodies be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014